Article ID Journal Published Year Pages File Type
10357344 Journal of Computational Physics 2005 28 Pages PDF
Abstract
We present a new algorithm to simulate unsteady viscoelastic flows in abrupt contraction channels. In our approach we split the viscoelastic terms of the Oldroyd-B constitutive equation using Duhamel's formula and discretize the resulting PDEs using a semi-implicit finite difference method based on a Lax-Wendroff method for hyperbolic terms. In particular, we leave a small residual elastic term in the viscous limit by design to make the hyperbolic piece well-posed. A projection method is used to impose the incompressibility constraint. We are able to compute the full range of unsteady elastic flows in an abrupt contraction channel - from the viscous limit to the elastic limit - in a stable and convergent manner. We demonstrate the range of our method for unsteady flow of a Maxwell fluid with and without viscosity in planar contraction channels. We also demonstrate stable and convergent results for benchmark high Weissenberg number problems at We = 1 and We = 10.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,