Article ID Journal Published Year Pages File Type
10357467 Journal of Computational Physics 2005 13 Pages PDF
Abstract
An iterative procedure is described for the solution of the indefinite Helmholtz equation that is a two-step generalization of classic Jacobi iteration using complex iteration parameters. The method converges for well-posed problems at a rate dependent only upon the grid size, wavelength and the effective absorption seen by the field. The use of a simple Jacobi preconditioner allows the solution of 3D problems of interest in waveguide optics in reasonable runtimes on a personal computer with memory usage that scales linearly with the number of grid points. Both the iterative method and the preconditioner are fully parallelizable.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
,