Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10359511 | Image and Vision Computing | 2005 | 12 Pages |
Abstract
An image zooming method based on vector quantization approximation for magnifying gray-scale and color image by a factor of 2 is proposed. In our proposed method, the unknown pixel values on the image are interpolated by using a vector quantization codebook based on their local information. In comparison of our method with the locally adaptive zooming algorithm published in [S. Battiato, G. Gallo, F. Stanco, A locally adaptive zooming algorithm for digital images, Image and Vision Computing, 20(11) (2002) 805-812.], our experimental results have demonstrated that the image quality of the enlarged image is superior to the method in [S. Battiato, G. Gallo, F. Stanco, A locally adaptive zooming algorithm for digital images, Image and Vision Computing, 20(11) (2002) 805-812.]. Not only is our method simpler to implement by utilizing a table look-up technique on codebook, but also is much easier in translating to color images than that of [S. Battiato, G. Gallo, F. Stanco, A locally adaptive zooming algorithm for digital images, Image and Vision Computing, 20(11) (2002) 805-812.] by replacing an adequate codebook.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Vision and Pattern Recognition
Authors
Chin-Chen Chang, Yung-Chen Chou, Yuan-Hui Yu, Kai-Jung Shih,