Article ID Journal Published Year Pages File Type
10359634 Image and Vision Computing 2005 13 Pages PDF
Abstract
3D object segmentation is important in computer vision such as target detection in biomedical image analysis. A new method, called B-Surface algorithm, is generated for 3D object segmentation. An improved 3D external force field combined with the normalized GVF is utilized. After the initialization of a surface model near the target, B-Surface starts to deform to locate the boundary of the object. First, it overcomes the difficulty that comes from analyzing 3D volume image slice by slice. And the speed of B-Surface deformation is enhanced since the internal forces are not needed to compute in every iteration deformation step. Next, the normal at every surface point can be calculated easily since B-Surface is a continuous deformable model. And it has the ability to achieve high compression ratio (ratio of data to parameters) by presenting the whole surface with only a relatively small number of control points. Experimental results and analysis are presented in this paper. We can see that the B-Surface algorithm can find the surface of the target efficiently.
Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,