Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10360048 | Journal of Visual Communication and Image Representation | 2014 | 10 Pages |
Abstract
In this paper, we propose an effective method to recognize human actions using 3D skeleton joints recovered from 3D depth data of RGBD cameras. We design a new action feature descriptor for action recognition based on differences of skeleton joints, i.e., EigenJoints which combine action information including static posture, motion property, and overall dynamics. Accumulated Motion Energy (AME) is then proposed to perform informative frame selection, which is able to remove noisy frames and reduce computational cost. We employ non-parametric Naïve-Bayes-Nearest-Neighbor (NBNN) to classify multiple actions. The experimental results on several challenging datasets demonstrate that our approach outperforms the state-of-the-art methods. In addition, we investigate how many frames are necessary for our method to perform classification in the scenario of online action recognition. We observe that the first 30-40% frames are sufficient to achieve comparable results to that using the entire video sequences on the MSR Action3D dataset.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Vision and Pattern Recognition
Authors
Xiaodong Yang, YingLi Tian,