Article ID Journal Published Year Pages File Type
10360393 Pattern Recognition 2014 13 Pages PDF
Abstract
In this paper we propose a two-stage method for recognizing sketched symbols that combine the use of a discriminative model, for labeling symbol strokes and a distance-based clustering algorithm, for grouping the labels belonging to the same symbol. In the first stage, we employ Latent-Dynamic Conditional Random Field (LDCRF), a discriminative model able to analyze the features of unsegmented sequences of strokes by taking into account spatio-temporal information, and to classify the symbol parts by considering contextual information. In the second stage, the labels obtained from LDCRF are grouped into symbol labels by using a distance-based clustering algorithm which takes into account the geometric relationships among strokes. The effectiveness of our method has been evaluated on the domain of electric circuit diagrams achieving accuracy values varying between 81.3% and 91.0%.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,