Article ID Journal Published Year Pages File Type
10360451 Pattern Recognition 2005 15 Pages PDF
Abstract
In this article we present a new appearance-based approach for the classification and the localization of 3-D objects in complex scenes. A main problem for object recognition is that the size and the appearance of the objects in the image vary for 3-D transformations. For this reason, we model the region of the object in the image as well as the object features themselves as functions of these transformations. We integrate the model into a statistical framework, and so we can deal with noise and illumination changes. To handle heterogeneous background and occlusions, we introduce a background model and an assignment function. Thus, the object recognition system becomes robust, and a reliable distinction, which features belong to the object and which to the background, is possible. Experiments on three large data sets that contain rotations orthogonal to the image plane and scaling with together more than 100 000 images show that the approach is well suited for this task.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,