Article ID Journal Published Year Pages File Type
10361216 Pattern Recognition 2005 9 Pages PDF
Abstract
The linear discriminant analysis (LDA) is one of the most traditional linear dimensionality reduction methods. This paper incorporates the inter-class relationships as relevance weights into the estimation of the overall within-class scatter matrix in order to improve the performance of the basic LDA method and some of its improved variants. We demonstrate that in some specific situations the standard multi-class LDA almost totally fails to find a discriminative subspace if the proposed relevance weights are not incorporated. In order to estimate the relevance weights of individual within-class scatter matrices, we propose several methods of which one employs the evolution strategies.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,