Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10363194 | Real-Time Imaging | 2005 | 11 Pages |
Abstract
This paper presents a new progressive refinement algorithm for full spectral rendering. This algorithm adopts wavelet transformation to efficient represent full spectral data. To our knowledge, this is the first approach to employing such a transformation for progressive, full spectral rendering, where the radiance calculation through multiplications of two spectral functions is computed under a wavelet basis. We implemented the proposed technique for Monte Carlo direct lighting, and divide the rendering process into 9 stages (i=1-9), each of which employs the first leading 2i coefficients to produce progressive results. In the fourth progressive stage, our algorithm renders a spectral image that is 95% similar to the final non-progressive approach but only requires less than 70% of execution time. The quality of the rendered image is visually plausible being indistinguishable to those rendered by the non-progressive method. Our algorithm demonstrates features of fast convergence and high image fidelity. It is graceful, efficient, progressive, and flexible for full spectral rendering.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Vision and Pattern Recognition
Authors
Jin-Ren Chern, Chung-Ming Wang,