Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10366382 | Information and Software Technology | 2011 | 25 Pages |
Abstract
The selected studies support (with varying strength), the premise that the effective use of ASA is improved by supplementing ASA with an AAIT. Seven of the 21 selected studies reported the precision of the proposed AAITs. The two studies with the highest precision built models using the subject program's history. Precision measures how well a technique identifies true actionable alerts out of all predicted actionable alerts. Precision does not measure the number of actionable alerts missed by an AAIT or how well an AAIT identifies unactionable alerts. Inconsistent use of evaluation metrics, subject programs, and ASAs in the selected studies preclude meta-analysis and prevent the current results from informing evidence-based selection of an AAIT. We propose building on an actionable alert identification benchmark for comparison and evaluation of AAIT from literature on a standard set of subjects and utilizing a common set of evaluation metrics.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Human-Computer Interaction
Authors
Sarah Heckman, Laurie Williams,