Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10367395 | Decision Support Systems | 2005 | 16 Pages |
Abstract
In the digital market, attracting sufficient online traffic in a business to customer Web site is vital to an online business's success. The changing patterns of Internet surfer access to e-commerce sites pose challenges for the Internet marketing teams of online companies. For e-business to grow, a system must be devised to provide customers' preferred traversal patterns from product awareness and exploration to purchase commitment. Such knowledge can be discovered by synthesizing a large volume of Web access data through information compression to produce a view of the frequent access patterns of e-customers. This paper develops constructs for measuring the online movement of e-customers, and uses a mental cognitive model to identify the four important dimensions of e-customer behavior, abstract their behavioral changes by developing a three-phase e-customer behavioral graph, and tests the instrument via a prototype that uses an online analytical mining (OLAM) methodology. The knowledge discovered is expected to foster the development of a marketing plan for B2C Web sites. A prototype with an empirical Web server log file is used to verify the feasibility of the methodology.
Related Topics
Physical Sciences and Engineering
Computer Science
Information Systems
Authors
Irene S.Y. Kwan, Joseph Fong, H.K. Wong,