Article ID Journal Published Year Pages File Type
10368029 Decision Support Systems 2005 19 Pages PDF
Abstract
A market-based scheduling mechanism allocates resources indexed by time to alternative uses based on the bids of participating agents. Agents are typically interested in multiple time slots of the schedulable resource, with value determined by the earliest deadline by which they can complete their corresponding tasks. Despite the strong complementarities among slots induced by such preferences, it is often infeasible to deploy a mechanism that coordinates allocation across all time slots. We explore the case of separate, simultaneous markets for individual time slots, and the strategic problem it poses for bidding agents. Investigation of the straightforward bidding policy and its variants indicates that the efficacy of particular strategies depends critically on preferences and strategies of other agents, and that the strategy space is far too complex to yield to general game-theoretic analysis. For particular environments, however, it is often possible to derive constrained equilibria through evolutionary search methods.
Related Topics
Physical Sciences and Engineering Computer Science Information Systems
Authors
, , , ,