Article ID Journal Published Year Pages File Type
10368432 Biomedical Signal Processing and Control 2013 9 Pages PDF
Abstract
Fast axonal conduction of action potentials in mammals relies on myelin insulation. Demyelination can cause slowed, blocked, desynchronized, or paradoxically excessive spiking that underlies the symptoms observed in demyelination diseases. Feedback control via functional electrical stimulation (FES) seems to be a promising treatment modality in such diseases. However, there are challenges to implementing such method for neurons: high nonlinearity, biological tissue constrains and unobservable ion channel states. To address this problem, we propose an estimating and tracking control strategy for systems based on Kalman filter, in order to enhance the action potential propagation reliability of demyelinated neuron via FES. Unscented Kalman filter (UKF) is employed to estimate the unobservable states and parameters in the demyelination neuron model from membrane potential dynamics. Our method could promote the design of new closed-loop electrical stimulation systems for patients suffering from different nerve system dysfunctions.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , ,