Article ID Journal Published Year Pages File Type
10368449 Biomedical Signal Processing and Control 2013 11 Pages PDF
Abstract
Short inter-stimulus interval (ISI) is one inherent characteristic of the high stimulus-rate (HSR) paradigms for studying auditory evoked potentials (AEPs). At short ISIs, the AEPs to adjacent stimuli overlap. To resolve the AEP to a specific stimulus requires an inverse process of overlapping. Inverse filtering (also called as deconvolution) has been commonly employed to achieve this goal. However, the resulted signal may be severely distorted as inverse filtering can substantially amplify such undesired components as noises and artifacts in the raw EEG recordings. In practice, even if care be taken to obtain quality EEGs, noises and artifacts are unavoidable. It is thus critical to remove or at least supress these undesired components for studies using HSR paradigms. In this paper, we propose a systematic approach to EEG signal enhancement based on empirical mode decomposition (EMD) and threshold filtering/rejection. Using synthetic and real data, we test the effectiveness of our approach. Results for both types of data consistently demonstrate that our methods can significantly improve the quality of recovered AEPs, according to visual inspection and SNRs estimated using two metrics.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , , ,