Article ID Journal Published Year Pages File Type
10377715 Journal of Colloid and Interface Science 2005 8 Pages PDF
Abstract
The drag coefficient of an isolated, rigid cylindrical particle in a Carreau fluid is evaluated. The result of numerical simulation reveals that, in general, the shear-thinning nature of a Carreau fluid yields a drag coefficient smaller than that for the corresponding Newtonian fluid. Also, the smaller the Reynolds number, the more appreciable the decrease of the drag coefficient as the relaxation time constant of the Carreau fluid increases. The influence of the index parameter of a Carreau fluid on the drag coefficient depends largely on the magnitude of the relaxation time constant and is insensitive to the Reynolds number. Only if the relaxation time constant is sufficiently large is the influence of the index parameter on the drag coefficient significant. If the Reynolds number and/or the relaxation time constant is sufficiently large, the flow field upstream of a particle becomes asymmetric to that downstream. In general, the influence of the index parameter, the relaxation time constant, and the Reynolds number on the flow field follows the order index parameter < relaxation time constant < Reynolds number.
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,