Article ID Journal Published Year Pages File Type
10378059 Journal of Colloid and Interface Science 2005 10 Pages PDF
Abstract
The changes in the secondary conformation and surface hydrophobicity of β-lactoglobulin subjected to different thermal treatments were characterized at pH values of 7, 5.5 and 4 using circular dichroism (CD) and hydrophobic dye binding. Heating resulted in a decrease in α-helix content with a corresponding increase in random coil at all pH values, this change being more pronounced for small heating times. Heating also resulted in an increase in surface hydrophobicity as a result of partial denaturation, this increase being more pronounced at pH 4. Thermal treatment resulted in a shift of the spread monolayer isotherm at air-water interface to smaller area per molecule due to increased flexibility and more loop formation. Thermal treatment led to an increase in interfacial shear elasticity and viscosity of adsorbed β-lactoglobulin layer at pH 5.5 and 7. Interfacial shear elasticity, shear viscosity, stability of β-lactoglobulin stabilized emulsion and average coalescence time of a single droplet at a planar oil-water interface with adsorbed protein layer exhibited a maximum for protein subjected to 15 min heat treatment at pH 7. At pH 5.5, the interfacial shear rheological properties and average single drop coalescence time were maximum for 15 min heat treatment whereas emulsion stability was maximum for 5 min heat treatment. At pH 7, thermal treatment was found to enhance foam stability. Analysis of thin film drainage indicated that interfacial shear rheological properties do not influence thin film drainage.
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,