Article ID Journal Published Year Pages File Type
10378114 Journal of Colloid and Interface Science 2005 7 Pages PDF
Abstract
The formation of O/W nano-emulsions by the PIT emulsification method in water/mixed nonionic surfactant/oil systems has been studied. The hydrophilic-lipophilic properties of the surfactant were varied by mixing polyoxyethylene 4-lauryl ether (C¯12E¯4) and polyoxyethylene 6-lauryl ether (C¯12E¯6). Emulsification was performed in samples with constant oil concentration (20 wt%) by fast cooling from the corresponding HLB temperature to 25 °C. Nano-emulsions with droplet radius 60-70 nm and 25-30 nm were obtained at total surfactant concentrations of 4 and 8 wt%, respectively. Moreover, droplet size remained practically unchanged, independent of the surfactant mixing ratio, XC12E6. At 4 wt% surfactant concentration, the polydispersity and instability of nano-emulsions increased with the increase in XC12E6. However, at 8 wt% surfactant concentration, nano-emulsions with low polydispersity and high stability were obtained in a wide range of surfactant mixing ratios. Phase behavior studies showed that at 4 wt% surfactant concentration, three-liquid phases (W + D + O) coexist at the starting emulsification temperature. Furthermore, the excess oil phase with respect to the microemulsion D-phase increases with the increase in XC12E6, which could explain the increase in instability. At 8 wt% surfactant concentration, a microemulsion D-phase is present when emulsification starts. The low droplet size and polydispersity and higher stability of these nano-emulsions have been attributed, in addition to the increase in the surface or interfacial activity, to the spontaneous emulsification produced in the microemulsion D-phase.
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , , , , ,