Article ID Journal Published Year Pages File Type
10378285 Journal of Colloid and Interface Science 2005 11 Pages PDF
Abstract
We present an experimental study of the aggregation of paramagnetic particles, in the presence of controlled laminar shear flow, conducted in microchannels subjected to an external magnetic field. The microfluidic channels are made of either glass/silicon or polydimethylsiloxane. In ranges of time up to hundreds of seconds, the growth mechanism of the linear chain consists of the accumulation of isolated particles or small clusters onto existing chains, which are all moving at different speeds. In this time regime the chain length increases linearly and has a growth rate that increases as a power law with the shear. At longer times the chain lengths saturate. The Smoluchovski model, which assumes single particle-chain interactions only, closely reproduces the observations both qualitatively and quantitatively. In particular, the evolution of the growth rate of the mean chain length with respect to the shear rate S, predicted as S1/4, is found to be consistent with the experiments.
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , ,