Article ID Journal Published Year Pages File Type
10378772 Journal of Colloid and Interface Science 2005 6 Pages PDF
Abstract
The mechanism of rhythmic pattern formation in reaction-diffusion systems is investigated theoretically by introducing a new concept. The boundary that separates the two reacting species virtually migrates as the diffusion proceeds into the gelatinous medium. Based on this boundary migration scenario, all the well-established relations on Liesegang patterns could be proved, in a rather modified way. The idea of formation of intermediate colloidal haze prior to patterning along with the moving boundary model proved to be efficient in predicting the concentration dependence of the width of the spatiotemporal patterns. The experimental observations support the width law relation developed.
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, ,