Article ID Journal Published Year Pages File Type
10378785 Journal of Colloid and Interface Science 2005 8 Pages PDF
Abstract
Macroscopic properties of foams are highly dependent on the liquid volume fraction, which has motivated many studies on foam drainage in the last decade. Theoretical developments and recent experimental results have suggested that two macroscopic drainage regimes could be expected, in relation with flow transitions occurring at the microscopic level, essentially in the Plateau border channels. We have constructed a setup, the Plateau border apparatus, to study the hydrodynamics of a single Plateau border channel, focusing on the surface properties of the foaming solution. Experimental results have shown that the actual theoretical models only partially predict the dissipation of liquid flow through a Plateau border channel. The major discrepancies can be explained considering additional dissipation processes related to the properties of the interface, and to the liquid flows induced in adjoining films as the liquid flows in the channel. Evidence of the hydrodynamic coupling between the channel and the adjoining films is given in the paper.
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,