Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10382 | Biomaterials | 2009 | 7 Pages |
Amphiphilic PEO–silanes (a–c) having siloxane tethers of varying lengths with the general formula α-(EtO)3Si–(CH2)2–oligodimethylsiloxanen-block-poly(ethylene oxide)8–OCH3 [n = 0 (a), n = 4 (b), and n = 13 (c)] were grafted onto silicon wafers and resistance to adsorption of plasma proteins was measured. Distancing the PEO segment from the hydrolyzable triethoxysilane [(EtO)3Si] grafting group by a oligodimethylsiloxane tether represents a new method of grafting PEO chains to surfaces. Properties of surfaces grafted with a–c were compared to surfaces grafted with a traditional PEO–silane containing a propyl spacer [(EtO)3Si–(CH2)3–poly(ethylene oxide)8–OCH3, PEO control]. As the siloxane tether length increased, chain density of PEO–silanes grafted onto oxidized silicon wafers decreased and hydrophobicity of the PEO–silane increased which led to a decrease in surface hydrophilicity. Despite decreased surface hydrophilicity, resistance to the adsorption of bovine serum albumin (BSA) increased in the order: PEO control < a < b ≈ c and to human fibrinogen (HF) increased in the order: PEO control < a < b < c.