Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10400041 | Control Engineering Practice | 2012 | 10 Pages |
Abstract
In this paper, a practical procedure for linear parameter-varying (LPV) modeling and identification of a robotic manipulator is presented, which leads to a successful experimental implementation of an LPV gain-scheduled controller. A nonlinear dynamic model of a two-degrees-of-freedom manipulator containing all important terms is obtained and unknown parameters which are required to construct an LPV model are identified. An important tool for obtaining a model of complexity low enough to be suitable for controller synthesis is the principle-component-analysis-based technique of parameter set mapping. Since the resulting quasi-LPV model has a large number of affine scheduling parameters and a large overbounding, parameter set mapping is used to reduce conservatism and complexity in controller design by finding tighter parameter regions with fewer scheduling parameters. A sufficient a posteriori condition is derived to assess the stability of the resulting closed-loop system. To evaluate the applicability and efficiency of the approximated model, a polytopic LPV gain-scheduled controller is synthesized and implemented experimentally on an industrial robot for a trajectory tracking task. The experimental results illustrate that the designed LPV controller outperforms an independent joint PD controller in terms of tracking performance and achieves a slightly better accuracy than a model-based inverse dynamics controller, while having a simpler structure. Moreover, it is shown that the LPV controller is more robust against dynamic parameter uncertainty.
Related Topics
Physical Sciences and Engineering
Engineering
Aerospace Engineering
Authors
Seyed Mahdi Hashemi, Hossam Seddik Abbas, Herbert Werner,