Article ID Journal Published Year Pages File Type
10411002 Sensors and Actuators B: Chemical 2005 7 Pages PDF
Abstract
We report the use of thin-film organic photodiodes as integrated optical detectors for microscale chemiluminescence. The copper phthalocyanine-fullerene (CuPc-C60) small molecule photodiodes have an external quantum efficiency of ∼30% at 600-700 nm, an active area of 2 mm × 8 mm and a total thickness of ∼2 mm. Simple detector fabrication, based on layer-by-layer vacuum deposition, allows facile integration with planar chip-based systems. To demonstrate the efficacy of the approach, CuPc-C60 photodiodes were used to monitor a peroxyoxalate based chemiluminescence reaction (PO-CL) within a poly(dimethylsiloxane) (PDMS) microfluidic device. Optimum results were obtained for applied reagent flow rates of 25 μL/min, yielding a CL signal of 8.8 nA within 11 min. Reproducibility was excellent with typical relative standard deviations (R.S.D.) below 1.5%. Preliminary quantitation of hydrogen peroxide yielded a detection limit of ∼1 mM and linearity over at least three decades. With improved sensitivity and when combined with enzymatic assays the described integrated devices could find many applications in point-of-care diagnostics.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,