Article ID Journal Published Year Pages File Type
10411042 Sensors and Actuators B: Chemical 2005 8 Pages PDF
Abstract
Rapid heat transfer is crucial for an efficient polymerase chain reaction (PCR), and this makes temperature control one of the most essential features in a micro-PCR system, which always includes a heater and a sensor composing a closed-loop. Yet, the fabrication of the heater and the sensor often prevented micro-PCR systems from achieving both cost-effectiveness and fabrication-easiness. For most of the early researches micromachining techniques were used to allow sensors and heaters be integrated on a silicon or glass chip. However, the cost prevented them from wide applications. The work described in this paper is part of our effort to solve the cost/fabrication dilemma. An innovative digital temperature control system was developed by introducing a heater/sensor switching procedure. Only one temperature controlling element fabricated by flexible printed circuit technology was utilized in the constructed PCR device with minimum fabrication steps. The glass chip-based device was made from low cost materials and assembled with adhesive bonding. Through seemingly simple steps, we obtained both disposability and portability at the same time. Temperature stability within ±0.3 °C and a transitional rate of 8 °C/s during heating/cooling was achieved. A 244 bp DNA fragment of hepatitis C virus was successfully amplified in our device by a three-stage thermal cycling process. Further improvement was assisted by finite element analysis, and demonstrated by experiment.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,