Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10522819 | Transportation Research Part B: Methodological | 2005 | 18 Pages |
Abstract
Measurements taken downstream of freeway/on-ramp merges have previously shown that discharge flow diminishes when a merge becomes an isolated bottleneck. By means of observation and experiment, we show here that metering an on-ramp can recover the higher discharge flow at a merge and thereby increase the merge capacity. Detailed observations were collected at a single merge using video. These data revealed that the reductions in discharge flow are triggered by a queue that forms near the merge in the freeway shoulder lane and then spreads laterally, as drivers change lanes to maneuver around slow traffic. Our experiments show that once restrictive metering mitigated this shoulder lane queue, high outflows often returned to the median lane. High merge outflows could be restored in all freeway lanes by then relaxing the metering rate so that inflows from the on-ramp increased. Although outflows recovered in this fashion were not sustained for periods greater than 13Â min, the findings are the first real evidence that ramp metering can favorably affect the capacity of an isolated merge. Furthermore, these findings point to control strategies that might generate higher outflows for more prolonged periods and increase merge capacity even more. Finally, the findings uncover details of merge operation that are essential for developing realistic theories of merging traffic.
Related Topics
Social Sciences and Humanities
Decision Sciences
Management Science and Operations Research
Authors
Michael J. Cassidy, Jittichai Rudjanakanoknad,