Article ID Journal Published Year Pages File Type
10524492 Journal of Multivariate Analysis 2005 17 Pages PDF
Abstract
A regularized classifier is proposed for a two-population classification problem of mixed continuous and categorical variables in a general location model(GLOM). The limiting overall expected error for the classifier is given. It can be used in an optimization search for the regularization parameters. For a heteroscedastic spherical dispersion across all locations, an asymptotic error is available which provides an alternative criterion for the optimization search. In addition, the asymptotic error can serve as a baseline for practical comparisons with other classifiers. Results based on a simulation and two real datasets are presented.
Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
,