Article ID Journal Published Year Pages File Type
1145152 Journal of Multivariate Analysis 2016 15 Pages PDF
Abstract

We consider the asymptotic properties of Bayesian functional linear regression models where the response is a scalar and the predictor is a random function. Functional linear regression models have been routinely applied to many functional data analytic tasks in practice, and recent developments have been made in theory and methods. However, few works have investigated the frequentist convergence property of the posterior distribution of the Bayesian functional linear regression model. In this paper, we attempt to conduct a theoretical study to understand the posterior contraction rate in the Bayesian functional linear regression. It is shown that an appropriately chosen prior leads to the minimax rate in prediction risk.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, , , ,