Article ID Journal Published Year Pages File Type
10524510 Journal of Multivariate Analysis 2005 21 Pages PDF
Abstract
We define a new family of central regions with respect to a probability measure. They are induced by a set or a family of sets of functions and we name them integral trimmed regions. The halfspace trimming and the zonoid trimming are particular cases of integral trimmed regions. We focus our work on the derivation of properties of such integral trimmed regions from conditions satisfied by the generating classes of functions. Further we show that, under mild conditions, the population integral trimmed region of a given depth can be characterized in terms of certain regions based on empirical distributions.
Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, ,