Article ID Journal Published Year Pages File Type
10524917 Journal of Statistical Planning and Inference 2005 16 Pages PDF
Abstract
The proportional hazards regression model is commonly used to evaluate the relationship between survival and covariates. Covariates are frequently measured with error. Substituting mismeasured values for the true covariates leads to biased estimation. Hu et al. (Biometrics 88 (1998) 447) have proposed to base estimation in the proportional hazards model with covariate measurement error on a joint likelihood for survival and the covariate variable. Nonparametric maximum likelihood estimation (NPMLE) was used and simulations were conducted to assess the asymptotic validity of this approach. In this paper, we derive a rigorous proof of asymptotic normality of the NPML estimators.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,