Article ID Journal Published Year Pages File Type
10525210 Journal of Statistical Planning and Inference 2005 16 Pages PDF
Abstract
The Pickands estimator for the extreme value index is generalized in a way that includes all of its previously known variants. A detailed study of the asymptotic behavior of the estimators in the family serves to determine its optimally performing members. These are given by simple, explicit formulas, have the same asymptotic variance as the maximum likelihood estimator in the generalized Pareto model, and are robust to departures from the limiting generalized Pareto model in case the convergence of the excess distribution to its limit is slow. A simulation study involving a wide range of distributions shows the new estimators to compare favorably with the maximum likelihood estimator.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,