Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10525235 | Journal of Statistical Planning and Inference | 2005 | 11 Pages |
Abstract
The Blum et al. (Ann. Math. Statist. 32 (1961) 485) test of bivariate independence, an asymptotic equivalent of Hoeffding's (Ann. Math. Statist. 19 (1948) 546) test, is consistent against all dependence alternatives. A concise tabulation of a well-considered approximation for the asymptotic percentiles of its null distribution is given in Blum et al. and a more complete selection of Monte Carlo percentiles, for samples of size 5 and larger, appears in Mudholkar and Wilding (J. Roy. Statist. Soc. 52 (2003) 1). However, neither tabulation is adequate for estimating p-values of the test. In this note we use a moment based analogue of the classical Wilson-Hilferty transformation to obtain two transformations of type Tn=(nBn)hn. The transformations Tn are then used to construct and compare a Gaussian and a scaled chi-square approximation for the null distribution of nBn. Both approximations have excellent accuracy, but the Gaussian approximation is more convenient because of its portability.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Govind S. Mudholkar, Gregory E. Wilding,