| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 10526261 | Statistics & Probability Letters | 2005 | 10 Pages | 
Abstract
												Let X=(Xt)t⩾0 be the square of a δ (⩾0)-dimensional Bessel process starting at zero. Define iterated stochastic integrals In(t,δ), t⩾0 inductively byIn(t,δ)=â«0tIn-1(s,δ)dXswith I0(t,δ)=1 and I1(t,δ)=Xt. Then the inequalitiescn,p,δâ¥Ïnâ¥p⩽sup0⩽t⩽Ï|In(t,δ)|p⩽Cn,p,δâ¥Ïnâ¥pandcn,p,δâ¥Gδ(Ï)nâ¥p⩽sup0⩽t⩽Ï|In(t,δ)|/(1+t)np⩽Cn,p,δâ¥Gδ(Ï)nâ¥pare proved to hold for all 0
																																	
																																	
Related Topics
												
													Physical Sciences and Engineering
													Mathematics
													Statistics and Probability
												
											Authors
												Litan Yan, Jingyun Ling, 
											