Article ID Journal Published Year Pages File Type
10615139 Materials Science and Engineering: C 2005 9 Pages PDF
Abstract
Aging at higher temperatures resulted in resolution of the ω phase in 0.06 wt.% O. Lenticular α precipitation was observed at higher O content, the volume fraction of α increasing with increasing O at a constant aging temperature and with increasing aging temperature at a constant O content. The latter also resulted in coarsening of the α precipitates and an increase in their aspect ratio. Finally aging of these alloys resulted in the formation of precipitate free zones (PFZs) along prior β grain boundaries, the width of these zones increasing with an increasing aging temperature. These observations are consistent with the ability of O to suppress ω phase formation through interruption of the 〈111〉 lattice displacement required for this phase's formation, while promoting α phase formation at higher O content, presumably through local ordering within the β phase.
Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , ,