Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10645052 | Journal of Nuclear Materials | 2011 | 6 Pages |
Abstract
The paper concerns experimental investigations of plasma facing components erosion under the plasma heat loads expected in ITER divertor during transient events such as the Type I Edge-Localized Modes and the disruptions. The experiments were carried out at the TRINITI plasma gun QSPA-T. The carbon fiber composite and tungsten macrobrush targets designed for ITER were exposed to multiple plasma pulses of duration 0.5 ms and deposited energy in the range of 0.2-2.5 MJ/m2. Between some of the pulses the eroded surface was analyzed with profilometric measurements and electron microscopy. The CFC erosion is determined mainly by damages to the PAN-fibers. While the energy increases from 0.2 to 2.4 MJ/m2 the removed layer of PAN-fibers area increases from 0.01 to 10 μm per pulse. The erosion of tungsten (pure and lanthanum oxide-doped tungsten) is shown to be determined mainly by crack formation, melt layer movement and droplets ejection.
Related Topics
Physical Sciences and Engineering
Energy
Nuclear Energy and Engineering
Authors
N. Klimov, V. Podkovyrov, A. Zhitlukhin, D. Kovalenko, J. Linke, G. Pintsuk, I. Landman, S. Pestchanyi, B. Bazylev, G. Janeschitz, A. Loarte, M. Merola, T. Hirai, G. Federici, B. Riccardi, I. Mazul, R. Giniyatulin, L. Khimchenko, V. Koidan,