Article ID Journal Published Year Pages File Type
1067651 Alcohol 2011 14 Pages PDF
Abstract

We have selectively bred mice that reach very high blood ethanol concentrations (BECs) after drinking from a single bottle of 20% ethanol. High Drinking in the Dark (HDID-1) mice drink nearly 6 g/kg ethanol in 4 h and reach average BECs of more than 1.0 mg/mL. Previous studies suggest that DID and two-bottle preference for 10% ethanol with continuous access are influenced by many of the same genes. We therefore asked whether HDID-1 mice would differ from the HS/Npt control stock on two-bottle preference drinking. We serially offered mice access to 3–40% ethanol in tap water versus tap water. For ethanol concentrations between 3 and 20%, HDID-1 and HS/Npt controls did not differ in two-bottle preference drinking. At the highest concentrations, the HS/Npt mice drank more than the HDID-1 mice. We also tested the same mice for preference for two concentrations each of quinine, sucrose, and saccharin. Curiously, the mice showed preference ratios (volume of tastant/total fluid drunk) of about 50% for all tastants and concentrations. Thus, neither genotype showed either preference or avoidance for any tastant after high ethanol concentrations. Therefore, we compared naive groups of HDID-1 and HS/Npt mice for tastant preference. Results from this test showed that ethanol-naive mice preferred sweet fluids and avoided quinine but the genotypes did not differ. Finally, we tested HDID-1 and HS mice for an extended period for preference for 15% ethanol versus water during a 2-h access period in the dark. After several weeks, HDID-1 mice consumed significantly more than HS. We conclude that drinking in the dark shows some genetic overlap with other tests of preference drinking, but that the degree of genetic commonality depends on the model used.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,