Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10678290 | Applied Mathematics Letters | 2013 | 5 Pages |
Abstract
The motivation for this paper is to solve a model based on the dynamics of electrons in a plasma using a simplified Boltzmann equation. Such problems have arisen in active plasma resonance spectroscopy, which is used for plasma diagnostic techniques; see Braithwaite and Franklin (2009) [1]. We propose a modified iterative splitting approach to solve the Boltzmann equations as a system of integro-differential equations. To enable solution by fast and iterative computations, we first transform the integro-differential equations into second order differential equations. Second, we split each second order differential equations into two first order differential equations via a splitting approach. We carry out an error analysis of the higher order iterative approach. Numerical experiments with a simplified Boltzmann equation will be discussed, along with the benefits of computing with this splitting approach.
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
Jürgen Geiser,