Article ID Journal Published Year Pages File Type
10694402 Advances in Space Research 2015 10 Pages PDF
Abstract
This paper is concerned with two-impulse transfers from Earth to Earth-Moon L3 halo orbits. After an orbit injection maneuver from an Earth orbit, a spacecraft travels on a ballistic accelerated manifold trajectory to a position intersection with a halo orbit where an orbit injection maneuver is executed. Although many types of transfers are located, our primary concern is transfers that require either a low transfer time of flight or a small orbit injection maneuver. Several families of transfers lie along the edge of a time of flight/injection maneuver Pareto Front. These families share similar characteristics and are shown to be an extension of a transfer that utilizes a stable invariant manifold. The quickest family of transfers to L3 can be completed in 28.5-33 days with an injection maneuver of 61.75-130 m/s, with shorter duration transfers requiring a larger injection maneuver. The family of transfers with the smallest injection maneuvers given a duration limit of 140 days required 13.45 m/s.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , ,