Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10712526 | Magnetic Resonance Imaging | 2014 | 15 Pages |
Abstract
It is generally a challenging task to reconstruct dynamic magnetic resonance (MR) images with high spatial and high temporal resolutions, especially with highly incomplete k-space sampling. In this work, a novel method that combines a non-rigid image registration technique with sparsity-constrained image reconstruction is introduced. Employing a multi-resolution free-form deformation technique with B-spline interpolations, the non-rigid image registration accurately models the complex deformations of the physiological dynamics, and provides artifact-suppressed high spatial-resolution predictions. Based on these prediction images, the sparsity-constrained data fidelity-enforced image reconstruction further improves the reconstruction accuracy. When compared with the k-t FOCUSS with motion estimation/motion compensation (MEMC) technique on volunteer scans, the proposed method consistently outperforms in both the spatial and the temporal accuracy with variously accelerated k-space sampling. High fidelity reconstructions for dynamic systolic phases with reduction factor of 10 and cardiac perfusion series with reduction factor of 3 are presented.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Jin Jin, Feng Liu, Stuart Crozier,