Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10712625 | Magnetic Resonance Imaging | 2014 | 5 Pages |
Abstract
Magnetic resonance elastography (MRE) of the liver is a novel noninvasive clinical diagnostic tool to stage fibrosis based on measured stiffness. The purpose of this study is to design, evaluate and validate a rapid MRE acquisition technique for noninvasively quantitating liver stiffness which reduces by half the scan time, thereby decreasing image registration errors between four MRE phase offsets. In vivo liver MRE was performed on 16 healthy volunteers and 14 patients with biopsy-proven liver fibrosis using the standard clinical gradient recalled echo (GRE) MRE sequence (MREs) and a developed rapid GRE MRE sequence (MREr) to obtain the mean stiffness in an axial slice. The mean stiffness values obtained from the entire group using MREs and MREr were 2.72 ± 0.85 kPa and 2.7 ± 0.85 kPa, respectively, representing an insignificant difference. A linear correlation of R2 = 0.99 was determined between stiffness values obtained using MREs and MREr. Therefore, we can conclude that MREr can replace MREs, which reduces the scan time to half of that of the current standard acquisition (MREs), which will facilitate MRE imaging in patients with inability to hold their breath for long periods.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Suresh K. Chamarthi, Brian Raterman, Ria Mazumder, Anthony Michaels, Veeral M. Oza, James Hanje, Bradley Bolster, Ning Jin, Richard D. White, Arunark Kolipaka,