Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10712835 | Magnetic Resonance Imaging | 2005 | 6 Pages |
Abstract
In a single-voxel stimulated echo localization sequence in magnetic resonance spectroscopy, magnetic field gradients are inserted within the echo time (TE) to filter signals generated through coherence pathways other than that leading to the stimulated echo. There is a significant penalty for these gradients as they increase the minimum TE, thereby leading to significant signal loss from spin-spin relaxation and phase distortions in coupled spin systems. Here, an RF phase rotation technique is described for a stimulated echo localization sequence that allows removal of the gradients in the TE intervals and, subsequently, reduction of the minimum TE to only 6 ms. Experiments carried out on six healthy volunteers on a 1.5-T whole-body MR system show a significant signal increase in the metabolite concentrations when measured with a 6-ms TE (N-acetyl-aspartate, 12%, P=.002; creatine, 15%, P=.04; and glutamate+glutamine, 92%, P=.02) compared to concentrations measured with data collected at TEs of 15 and 20 ms.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Jack Knight-Scott, Dattesh D. Shanbhag, S. Andrea Dunham,