Article ID Journal Published Year Pages File Type
10712955 Magnetic Resonance Imaging 2005 6 Pages PDF
Abstract
In this presentation, we show how the slow and confined water dynamics at proximity of a colloidal surface provides an original way to probe colloidal shape and colloidal orientation dynamics. Two topics are presented. First of all, water field-cycling NMR relaxometry is used to probe the glass transition and the strong rotational slowing down of a colloidal system made of plate-like particles, a synthetic clay (laponite). Second, we analyze the case of long colloidal thin rods (either mineral or biologic such as DNA cylinders) dispersed in very diluted suspensions. At large distance and/or long time, these particles appear as a portion of a line. We discuss how the embedded fluid dynamics can be sensitive to this morphological crossover and may provide information about the particle shape. Some comparisons with recent experiments are presented.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
,