Article ID Journal Published Year Pages File Type
10712990 Magnetic Resonance Imaging 2005 5 Pages PDF
Abstract
Magic-angle sample spinning is one of the cornerstones in high-resolution NMR of solid and semisolid materials. The technique enhances spectral resolution by averaging away rank 2 anisotropic spin interactions, thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. In principle, it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied (e.g., magic-angle rotation of the B0 field). Here we will review some recent experimental results that show progress toward this goal. Also, we will explore some alternative approaches that may enable the recovery of spectral resolution in cases where the field is rotating off the magic angle. Such a possibility could help mitigate the technical problems that render difficult the practical implementation of this method at moderately strong magnetic fields.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,