Article ID Journal Published Year Pages File Type
10748245 Biochemical and Biophysical Research Communications 2016 6 Pages PDF
Abstract
Ascorbic acid (AsA) is an important antioxidant and its biosynthesis in plants has extensively been investigated. However, the key regulatory factors controlling the accumulation of AsA remain elusive. Here we report that tomato SlDof22, a member of the Dof family, negatively regulated AsA accumulation in tomato. RNA interference (RNAi) of SlDof22 in transgenic lines induced AsA levels, and affected the expression of genes in the D-mannose/L-galactose pathway and AsA recycling. In addition, SlSOS1 was significantly down-regulated in SlDof22 RNAi plants which resulted in reduced tolerance to salt stress. We further found that SlDof22 could bind to the promoter sequence of SlSOS1 gene by yeast one-hybrid analysis. Taken together, our data suggested that the Dof transcription factor SIDof22 involved in ascorbate accumulation and salt stress response in tomato.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,