Article ID Journal Published Year Pages File Type
10748545 Biochemical and Biophysical Research Communications 2016 6 Pages PDF
Abstract
The drug discovery research for cholestatic liver diseases has been hampered by the lack of a well-established human cholangiocyte model. Functional cholangiocyte-like cells differentiated from human induced pluripotent stem (iPS) cells are expected to be a promising candidate for such research, but there remains no well-established method for differentiating cholangiocytes from human iPS cells. In this study, we searched for a suitable extracellular matrix to promote cholangiocyte differentiation from human iPS cells, and found that both laminin 411 and laminin 511 were suitable for this purpose. The gene expression levels of the cholangiocyte markers, aquaporin 1 (AQP1), SRY-box 9 (SOX9), cystic fibrosis transmembrane conductance regulator (CFTR), G protein-coupled bile acid receptor 1 (GPBAR1), Jagged 1 (JAG1), secretin receptor (SCTR), and γ-glutamyl transferase (GGT1) were increased by using laminin 411 or laminin 511 as a matrix. In addition, the percentage of AQP1-positive cells was increased from 61.8% to 92.5% by using laminin 411 or laminin 511. Furthermore, the diameter and number of cysts consisted of cholangiocyte-like cells were increased when using either matrix. We believe that the human iPS cell-derived cholangiocyte-like cells, which were generated by using our differentiation technology, would be useful for the drug discovery research of cholestatic liver diseases.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , ,