Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10749077 | Biochemical and Biophysical Research Communications | 2016 | 7 Pages |
Abstract
Adiponectin is a pleiotropic adipokine implicated in obesity, metabolic syndrome and cardiovascular disease. Recent studies have identified adiponectin as a negative regulator of tissue fibrosis. Wnt/β-catenin signaling has also been implicated in metabolic syndrome and can promote tissue fibrosis, but the extent to which adiponectin cross-regulates Wnt/β-catenin signaling is unknown. Using primary human dermal fibroblasts and recombinant purified proteins, we show that adiponectin can limit β-catenin accumulation and downstream gene activation by inhibiting Lrp6 phosphorylation, a key activation step in canonical Wnt signaling. Inhibition of Wnt3a-mediated Lrp6 phospho-activation is relatively rapid (e.g., by 30 min), and is not dependent on established adiponectin G-protein coupled receptors, AdipoR1 and R2, suggesting a more direct relationship to Lrp6 signaling. In contrast, the ability of adiponectin to limit Wnt-induced and baseline collagen production in fibroblasts requires AdipoR1/R2. These results suggest the possibility that the pleiotropic effects of adiponectin may be mediated through distinct cell surface receptor complexes. Accordingly, we propose that the anti-fibrotic activity of adiponectin may be mediated through AdipoR1/R2 receptors, while the ability of adiponectin to inhibit Lrp6 phospho-activation may be relevant to other recently established roles for Lrp6 signaling in glucose metabolism and metabolic syndrome.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Lauren Reinke, Anna P. Lam, Annette S. Flozak, John Varga, Cara J. Gottardi,