Article ID Journal Published Year Pages File Type
10750028 Biochemical and Biophysical Research Communications 2015 6 Pages PDF
Abstract
Temozolomide is a novel cytotoxic agent currently used as first-line chemotherapy for glioblastoma multiforme (GBM). However, intrinsic or acquired chemoresistance to temozolomide remains the greatest obstacle to the successful treatment of human GBM. The principal mechanism responsible for this resistance is largely unknown. In the present study, we showed that expression of transcriptional co-activator with PDZ-binding motif (TAZ) in glioma cells correlated with temozolomide chemoresistance in human glioma cells. Overexpression of TAZ promoted temozolomide resistance in U-87MG cells, whereas knockdown of TAZ expression sensitized temozolomide-resistant U-251MG cells to temozolomide. Further, TAZ inhibits temozolomide induced apoptosis via upregulation of MCL-1 (myeloid cell leukemia 1) and high expression of TAZ predicts a poor prognosis for GBM patients. In conclusion, our results suggest that TAZ had a critical role in the resistance to temozolomide in glioma cells, and it may provide a promising target for improving the therapeutic outcome of temozolomide-resistant gliomas.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,