Article ID Journal Published Year Pages File Type
10750272 Biochemical and Biophysical Research Communications 2015 18 Pages PDF
Abstract
Streptococcus pneumoniae (S. p) remains one of the foremost causes of community-acquired pneumonia. Recent studies have shown that S. p lung infection is associated with plasminogen activator inhibitor-1 (PAI-1) expression, which inhibits acute lung injury. Such effects by S. p were negatively regulated by cylindromatosis (CYLD). The current study explored the underlying mechanisms. We showed that S. p-induced PAI-1 expression requires tumor necrosis factor receptor-associated factor 6 (TRAF-6) signaling. Si-RNA-mediated knockdown of TRAF-6 remarkably inhibited S. p-induced PAI-1 expression. Reversely, over-expression of wild type (wt-) TRAF-6 further potentiated PAI-1 expression in S. p-treated cells. We provided evidences to support that CYLD-mediated anti-PAI-1 activity might be through direct regulation of TRAF-6. Our results from co-immunoprecipitation (co-IP) and confocal microscopy assays confirmed a direct association between the CYLD and TRAF-6 in A549 cells. Over-expression of wt-CYLD remarkably inhibited TRAF-6 ubiquitination and subsequent PAI-1 expression. Introducing a mutated CYLD, on the other hand, enhanced TRAF-6 ubiquitination and PAI-1 expression. Together, these results indicate that TRAF-6 mediates S. p-induced PAI-1 expression, and CYLD inhibits PAI-1 expression probably through deubiquitinating TRAF-6. The current study provided molecular insights of CYLD-mediated activities in S. p-induced PAI-1 expression and possible acute lung injury.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,