Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10750720 | Biochemical and Biophysical Research Communications | 2015 | 6 Pages |
Abstract
Emerging reports demonstrate that deregulated NLRP3 inflammasome activation is implicated in a variety of inflammatory and metabolic disorders, but the molecular mechanism underlying NLRP3 inflammasome regulation remains uncertain. Here, we present evidence that histone deacetylase 6 (HDAC6) inhibits the activation of NLRP3 inflammasome through its direct association with NLRP3. ShRNA-mediated knockdown of HDAC6 in bone marrow-derived macrophages (BMDMs) showed a significant increase in caspase-1 activation and interleukin-1 beta (IL-1β) secretion in response to NLRP3-activating stimulations, but not to absent in melanoma 2 (AIM2)-activating stimulation. In addition, knockdown of HDAC6 in BMDMs enhanced the oligomerization of ASC upon LPS/nigericin stimulation. The augmented NLRP3 inflammasome activation seen in HDAC6-knockdown BMDMs is independent of the deacetylase activity of HDAC6. Instead, HDAC6 directly associates with NLRP3 through its ubiquitin-binding domain. Moreover, PR619 treatment (deubiquitinase inhibitor) resulted in the elevation in the interaction of NLRP3 with HDAC6 and the decrease in NLRP3-dependent caspase-1 activation. Taken together, our results indicate that HDAC6 negatively regulates NLRP3 inflammasome activation through its interaction to ubiquitinated NLRP3.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Inhwa Hwang, Eunju Lee, Seon-A Jeon, Je-Wook Yu,