Article ID Journal Published Year Pages File Type
10750993 Biochemical and Biophysical Research Communications 2015 6 Pages PDF
Abstract
In animal circadian clock machinery, the phosphorylation program of PERIOD (PER) leads to the spatio-temporal regulation of diverse PER functions, which are crucial for the maintenance of ∼24-hr circadian rhythmicity. The peptidyl-prolyl isomerase PIN1 modulates the diverse functions of its substrates by inducing conformational changes upon recognizing specific phosphorylated residues. Here, we show that overexpression of Drosophila pin1, dodo (dod), lengthens the locomotor behavioral period. Using Drosophila S2 cells, we demonstrate that Dod associates preferentially with phosphorylated species of PER, which delays the phosphorylation-dependent degradation of PER. Consistent with this, PER protein levels are higher in flies overexpressing dod. Taken together, we suggest that Dod plays a role in the maintenance of circadian period by regulating PER metabolism.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,