Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10751479 | Biochemical and Biophysical Research Communications | 2015 | 27 Pages |
Abstract
Under distinct pathological heart conditions, the expression of a single miRNA can display completely opposite patterns. However, the mechanism underlying the bidirectional regulation of a single miRNA and the clinical implications of this regulation remain largely unknown. To address this issue, we examined the regulation of miR-1, one of the most abundant miRNAs in the heart, during cardiac hypertrophy and ischemia/reperfusion (I/R). Our data indicated that different magnitudes and chronicities of ROS levels in cardiomyocytes resulted in differential expression of miR-1, subsequently altering the expression of myocardin. In animal models, the administration of a miR-1 mimic attenuated cardiac hypertrophy by suppressing the transverse aortic constriction-induced increase in myocardin expression, whereas the administration of anti-miR-1 ameliorated I/R-induced cardiac apoptosis and deterioration of heart function. Our findings indicated that a pathologic stimulus such as ROS can bidirectionally alter the expression of miRNA to contribute to the development of pathological conditions exhibiting distinct phenotypes and that the meticulous adjustment of the pathological miRNA levels is required to improve clinical outcomes.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Seahyoung Lee, Soyeon Lim, Onju Ham, Se-Yeon Lee, Chang Yeon Lee, Jun-Hee Park, Jiyun Lee, Hyang-Hee Seo, Ina Yun, Sun M. Han, Min-Ji Cha, Eunhyun Choi, Ki-Chul Hwang,